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Exploratory Factor Analysis with R can be performed using the factanal function. In 

addition to this standard function, some additional facilities are provided by the 

fa.promax function written by Dirk Enzmann, the psych library from William 

Revelle, and the Steiger R Library functions. To investigate some of the capabilities of 

these functions and work through this handout, please set up your working directory 

(either through the menu system or using the setwd command).  

 
setwd("C:/!!!Current Projects/P312/2009/R Working/Factor Analysis/") 

 

Then download the extra functions from the R Support Materials page at the course 

website and load them in with the commands: 

 
source("fa.promax.R") 
source("Steiger R Library Functions.R") 
 
 

Make sure that the Hmisc library is installed on your computer and has been loaded, as 

follows. If you are in the Hobbs 107 lab, you will need to remember how to set up a 

local library directory. Once the directory exists, you can enable it with the command 

 
.libPaths(‘c:/MyRLibs’) 

 

Otherwise, you can simply install and load the package with the commands 

 
install.packages(Hmisc) 
library(Hmisc) 
 

Once the library is loaded, you can load the AthleticsData file and attach it with the 

commands 
 
AthleticsData <- spss.get("AthleticsData.sav") 
attach(AthleticsData) 

 



spss.get has changed the variable names slightly, as you can see by calling the 

names function. 

 
names(AthleticsData) 
 
[1] "PINBALL"   "BILLIARD"  "GOLF"      "X.1500M"   "X.2KROW"   "X.12MINTR" 
[7] "BENCH"     "CURL"      "MAXPUSHU" 

 

Common Factor Extraction and Rotation with factanal 
 

As mentioned in class, there are in wide use two primary approaches to “factor 

analytic” methods: (a) common factor analysis, and (b) component analysis. In this 

section, we discuss the common factor model.  

 

The common factor model is a very restrictive model. It never fits perfectly in the 

sample (unless the sample is one we have constructed to fit perfectly!), and so we “fit 

the common factor model” in practice by making the discrepancy between the sample 

covariance matrix and the “reproduced” matrix as small as possible, according to a 

criterion known as a “discrepancy function.”  Specifically, the orthogonal common factor 

model implies that  

 2¢= +FF US  (1.1) 

Of course, we don’t know S , and because of sampling error, even if the common factor 

model fit S  perfectly, it would not fit the sample covariance matrix S perfectly. In 

practice then, we have 

 2ˆˆ ˆ ˆ¢= + + = +S FF U E ES  (1.2) 

where E is made as small as possible according to some criterion. This criterion is a 

function of S  and Ŝ , and reflects the size of the discrepancy between them. 

 

There are a number of discrepancy functions in use. Perhaps the most popular is the 

“maximum likelihood (ML)” discrepancy function. When F̂  and Û  are chosen to 

minimize the ML discrepancy function, they are referred to as “maximum likelihood 

estimates.” 

 



Maximum likelihood estimates are obtained by iteration, a process in which F̂  and Û  

are systematically altered to make the maximum likelihood discrepancy function get 

smaller and smaller.  

 

As discussed in the handout on “The Algebra of Factor Analysis,” for any F̂  in 

Equation (1.2), there are infinitely many alternative factor patterns that fit equally well. 

These are obtainable by “orthogonal” or “oblique” transformation. The process of 

transforming a factor pattern is generally referred to as “rotation.”  There are many 

methods of rotation. Two very popular methods are “varimax” rotation for orthogonal 

factors and “promax” rotation for oblique factors. Both methods are implemented in R. 

 

The factanal function fits a common factor model by the method of maximum 

likelihood.  You can find out a bit about the function through the R help system. Note: 

the function can analyze either raw data or a correlation or covariance matrix.  

 

To begin with, let’s analyze the AthleticsData with a 2 factor model.  

 
> fit.2 <- factanal(AthleticsData,factors=2,rotation="varimax") 
> print(fit.2) 

 
Call: 
factanal(x = AthleticsData, factors = 2, rotation = "varimax") 
 
Uniquenesses: 
  PINBALL  BILLIARD      GOLF   X.1500M   X.2KROW X.12MINTR     BENCH      
CURL  
    0.938     0.962     0.955     0.361     0.534     0.536     0.301     
0.540  
 MAXPUSHU  
    0.560  
 
Loadings: 
          Factor1 Factor2 
PINBALL    0.249          
BILLIARD   0.190          
GOLF       0.203          
X.1500M   -0.137   0.787  
X.2KROW    0.387   0.563  
X.12MINTR          0.681  
BENCH      0.821  -0.154  
CURL       0.676          
MAXPUSHU   0.526   0.404  
 



               Factor1 Factor2 
SS loadings      1.717   1.595 
Proportion Var   0.191   0.177 
Cumulative Var   0.191   0.368 
 
Test of the hypothesis that 2 factors are sufficient. 
The chi square statistic is 652.4 on 19 degrees of freedom. 
The p-value is 4.3e-126  

 

Near the bottom of the output, we can see that the significance level of the 2c  fit 

statistic is very small. This indicates that the hypothesis of perfect model fit is rejected. 

Since we are in a purely exploratory vein, let’s fit a 3 factor model. 

 
> fit.3 <- factanal(AthleticsData,factors=3,rotation="varimax") 
> print(fit.3) 

 
Call: 
factanal(x = AthleticsData, factors = 3, rotation = "varimax") 
 
Uniquenesses: 
  PINBALL  BILLIARD      GOLF   X.1500M   X.2KROW X.12MINTR     BENCH      
CURL  
    0.635     0.414     0.455     0.361     0.520     0.538     0.302     
0.536  
 MAXPUSHU  
    0.540  
 
Loadings: 
          Factor1 Factor2 Factor3 
PINBALL            0.131   0.590  
BILLIARD                   0.765  
GOLF                       0.735  
X.1500M    0.779  -0.179          
X.2KROW    0.585   0.372          
X.12MINTR  0.678                  
BENCH     -0.119   0.816   0.137  
CURL               0.674          
MAXPUSHU   0.433   0.522          
 
               Factor1 Factor2 Factor3 
SS loadings      1.613   1.584   1.502 
Proportion Var   0.179   0.176   0.167 
Cumulative Var   0.179   0.355   0.522 
 
Test of the hypothesis that 3 factors are sufficient. 
The chi square statistic is 12.94 on 12 degrees of freedom. 
The p-value is 0.373  

 

These results are much more promising. Although the sample size is reasonably large, 

1000N = , the significance level of .373 indicates that the hypothesis of perfect fit 



cannot be rejected. Changing from two factors to three has produced a huge 

improvement.  

 

We can “clean up” the factor pattern in several ways. One way is to hide small 

loadings, to reduce the visual clutter in the factor pattern. Another is to reduce the 

number of decimal places from 3 to 2. A third way is to sort the loadings to make the 

simple structure more obvious. The following command does all three. 

 
print(fit.3, digits = 2, cutoff = .2, sort = TRUE) 
 
Call: 
factanal(x = AthleticsData, factors = 3, rotation = "varimax") 
 
Uniquenesses: 
  PINBALL  BILLIARD      GOLF   X.1500M   X.2KROW X.12MINTR     BENCH      CURL  
     0.64      0.41      0.46      0.36      0.52      0.54      0.30      0.54  
 MAXPUSHU  
     0.54  
 
Loadings: 
          Factor1 Factor2 Factor3 
X.1500M    0.78                   
X.2KROW    0.58    0.37           
X.12MINTR  0.68                   
BENCH              0.82           
CURL               0.67           
MAXPUSHU   0.43    0.52           
PINBALL                    0.59   
BILLIARD                   0.76   
GOLF                       0.73   
 
               Factor1 Factor2 Factor3 
SS loadings       1.61    1.58    1.50 
Proportion Var    0.18    0.18    0.17 
Cumulative Var    0.18    0.36    0.52 
 
Test of the hypothesis that 3 factors are sufficient. 
The chi square statistic is 12.94 on 12 degrees of freedom. 
The p-value is 0.373 

 

Now it is obvious that there are 3 factors. The traditional approach to naming factors is 

as follows:  

 Examine the variables that load heavily on the factor 

 Try do decide what construct is common to these variables 

 Name the factor after that construct 

 



It seems that there are three factors. The first factor is something that is common to 

strong performance in a 1500 meter run, a 2000 meter row, and a 12 minute run. It 

seems like a good name for this factor is “Endurance.” The other two factors might be 

named “Strength,” and “Hand-Eye Coordination.” We can add these names to the 

loading matrix as follows: 

 
> colnames(fit.3$loadings)<-c("Endurance","Strength","Hand-Eye") 
> print(loadings(fit.3), digits = 2, cutoff = .2, sort = TRUE) 

 

Loadings: 
          Endurance Strength Hand-Eye 
X.1500M    0.78                       
X.2KROW    0.58      0.37             
X.12MINTR  0.68                       
BENCH                0.82             
CURL                 0.67             
MAXPUSHU   0.43      0.52             
PINBALL                       0.59    
BILLIARD                      0.76    
GOLF                          0.73    
 
               Endurance Strength Hand-Eye 
SS loadings         1.61     1.58     1.50 
Proportion Var      0.18     0.18     0.17 
Cumulative Var      0.18     0.36     0.52 

 

You can obtain an oblique promax solution by using the option rotation = promax.  
fit.3.promax <- update(fit.3,rotation="promax") 
colnames(fit.3.promax$loadings)<-c("Endurance","Strength","Hand-Eye") 
print(loadings(fit.3.promax), digits = 2, cutoff = .2, sort = TRUE) 

 
Loadings: 
          Endurance Strength Hand-Eye 
X.1500M    0.82     -0.29             
X.2KROW    0.55      0.31             
X.12MINTR  0.70                       
BENCH     -0.23      0.86             
CURL                 0.70             
PINBALL                       0.58    
BILLIARD                      0.77    
GOLF                          0.73    
MAXPUSHU   0.37      0.49             

 

For more information about the rotation methods, consult the R help with the 

command ?varimax. 



Enzmann’s Enhanced fa.promax Function 
 

Dirk Enzmann has made an enhanced version of the factanal function available 

online. This function will compute and save a number of key quantities in its fit object. 

In particular, it automatically computes unrotated, varimax rotated, and promax 

rotated solutions, as well as the factor correlation matrix. 

 

With Enzmann’s function and some of the factor analysis utilities we have provided, 

many other interesting quantities can be computed. 

 

Let’s take a quick look at some input and output from fa.promax. 

 

To enhance the output with factor names, use the following function. 

 
AssignFactorNames <- function(fit.object,names) 
{ 
colnames(fit.object$promax.loadings)<-names 
colnames(fit.object$varimax.loadings)<-names 
rownames(fit.object$corr.factors)<-names 
colnames(fit.object$corr.factors)<-names 
} 

 

Here is a factor analysis of our AthleticsData file. The cutoff function does not work. 

 
fit.3.Enzmann <- fa.promax(AthleticsData,factors=3, digits=2, sort=TRUE) 
AssignFactorNames(fit.3.Enzmann,factor.names) 
fit.3.Enzmann 
 
$uniqueness 
          residual variance 
BENCH                  0.30 
X.1500M                0.36 
BILLIARD               0.41 
GOLF                   0.46 
X.2KROW                0.52 
CURL                   0.54 
X.12MINTR              0.54 
MAXPUSHU               0.54 
PINBALL                0.64 
 
$unrotated.loadings 
          Factor1 Factor2 Factor3 



X.1500M      0.80   -0.01    0.01 
X.12MINTR    0.67    0.10   -0.03 
X.2KROW      0.50    0.41   -0.26 
BENCH       -0.28    0.73   -0.30 
CURL        -0.16    0.61   -0.27 
MAXPUSHU     0.32    0.51   -0.31 
BILLIARD     0.03    0.44    0.62 
GOLF         0.05    0.45    0.58 
PINBALL     -0.02    0.43    0.43 
 
$varimax.SS 
               Factor1 Factor2 Factor3 
SS loadings       1.61    1.58    1.50 
Proportion Var    0.18    0.18    0.17 
Cumulative Var    0.18    0.36    0.52 
 
$varimax.loadings 
          Factor1 Factor2 Factor3 
X.1500M      0.78   -0.18    0.02 
X.12MINTR    0.68   -0.04    0.04 
X.2KROW      0.58    0.37    0.01 
BENCH       -0.12    0.82    0.14 
CURL        -0.02    0.67    0.10 
MAXPUSHU     0.43    0.52    0.02 
BILLIARD     0.02    0.03    0.76 
GOLF         0.05    0.05    0.73 
PINBALL     -0.01    0.13    0.59 
 
$promax.SS 
               Factor1 Factor2 Factor3 
SS loadings       1.63    1.61    1.47 
Proportion Var    0.18    0.18    0.16 
Cumulative Var    0.18    0.36    0.52 
 
$promax.loadings 
          Factor1 Factor2 Factor3 
X.1500M      0.80   -0.25    0.03 
X.12MINTR    0.69   -0.10    0.04 
X.2KROW      0.56    0.33   -0.04 
BENCH       -0.19    0.84    0.03 
CURL        -0.08    0.69    0.01 
MAXPUSHU     0.40    0.50   -0.05 
BILLIARD     0.02   -0.02    0.77 
GOLF         0.04    0.00    0.74 
PINBALL     -0.02    0.10    0.58 
 
$promax.structure 
          Factor1 Factor2 Factor3 
X.1500M      0.76   -0.11    0.01 
X.12MINTR    0.67    0.02    0.04 
X.2KROW      0.61    0.42    0.04 
BENCH       -0.05    0.81    0.19 
CURL         0.03    0.68    0.14 
MAXPUSHU     0.47    0.55    0.06 
BILLIARD     0.04    0.13    0.77 
GOLF         0.06    0.15    0.74 
PINBALL      0.01    0.20    0.60 



 
$corr.factors 
        Factor1 Factor2 Factor3 
Factor1    1.00    0.16    0.03 
Factor2    0.16    1.00    0.19 
Factor3    0.03    0.19    1.00 
 
$n 
[1] 1000 
 
$chi 
objective  
    12.94  
 
$df 
[1] 12 
 
$p 
objective  
0.3734064  
  



Principal Components in R 
 

The princomp function performs component analysis in R, but unfortunately it fails to 

provide some of the facilities we need for cleaning up the pattern.  The psych library 

from William Revelle provides more functionality.  Type ?psych to find out more 

about it from the help facility. 

 
fit <- principal(AthleticsData, nfactors=3, rotate=”varimax”) 
fit # print results   
 
          V   PC2   PC1   PC3 
PINBALL   1              0.75 
BILLIARD  2              0.84 
GOLF      3              0.83 
X.1500M   4  0.84             
X.2KROW   5  0.68  0.43       
X.12MINTR 6  0.81             
BENCH     7        0.85       
CURL      8        0.82       
MAXPUSHU  9  0.49  0.63       
 
                PC2  PC1  PC3 
SS loadings    2.09 2.04 1.98 
Proportion Var 0.23 0.23 0.22 
Cumulative Var 0.23 0.46 0.68 
 


